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Abstract. In the category of Mordell curves ED : y2 = x3 + D with

nontrivial torsion groups we find curves of the generic rank two as qua-

dratic twists of E1, and of the generic rank at least two and at least three

as cubic twists of E1. Previous work, in the category of Mordell curves

with trivial torsion groups, has found infinitely many elliptic curves with

rank at least seven as sextic twists of E1 [4].
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1. Introduction

Let us consider the elliptic curve Ek defined over Q by the equation

y2 = x3 + k. (1.1)

The elliptic curve (1.1) with an integer k is known as Mordell curve in the

literature. (Throughout the paper, all curves and their points are assumed to

be Q-rational.)
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It is known that each elliptic curve has a quadratic twist. However, it is also

well known that elliptic curves with j-invariant equal to 0, or in other words,

curves of the form (1.1) also have higher twists. By [12, Definition 7.29], the

quadratic, cubic, and sextic twists of the curve (1.1) by D are respectively of

the forms EkD3 : y2 = x3+kD3, EkD2 : y2 = x3+kD2, and EkD : y2 = x3+kD.

We note that Ek ' EkD6 , EkD ' EkD5 , EkD2 ' EkD4 , and that the constants

of our curves are sixth-power free [15]. It would be interesting to have any

information concerning the rank behavior of twists of Ek as k ∈ Z varies. In

this work, however, we are interested in the k = 1 case.

By [5, Theorem 5.3], one can easily classify twists of E1 into two categories:

twists with trivial torsion groups, and twists with nontrivial torsion groups.

The first class includes sextic twists while the other includes quadratic and

cubic twists. In the first category, previous work has found infinitely many

elliptic curves with rank at least seven [4] and particular members with ranks

up to fifteen [6, 30 December, 2009]. Nevertheless, there is no more information

on quadratic and cubic twists of E1 (see also [10]). We recall that there are

several infinite families of not Mordell curves over Q with nonconstant quadratic

twists over the rational field Q(a), with the variable a, of rank at least two,

three, and four [9, 2].

In Section 2 it is given parametric families of cubic and quadratic twists of E1

whose (generic) ranks are, respectively, at least two and two, while in Section

3, we show the existence of infinitely many curves of rank ≥ 3, parametrised

by an elliptic curve of rank at least two, and also construct a curve whose rank

is at least three as cubic twists by the elliptic curve E1. We do so by showing

the independence of certain points.

2. Twists with Rank Two

Let us first recall how a torsion part of the Mordell curve Ek, with (nonzero)

integer k assumed sixth-power free, looks like ([5, Theorem 5.3]. If k = 1, then

T ' Z/6Z. If k 6= 1 and k is a square in Z, then T = {O, (0,
√
k), (0,−

√
k)}.

In case when k = −432, we have T = {O, (12, 36), (12,−36)}. If k 6= 1 and k

is cubic in Z, then T = {O, (− 3
√
k, 0)}. In the remaining cases, T = {O}. As

an immediate consequence we obtain that for any k 6= −432 if on the twisted

curve Ek defined over Q we have a rational point P = (x, y) with xy 6= 0, then

the order of P in the group Ek(Q) is infinite. Thus, the curve Ek over Q has

positive rank.

For our next results, we need the following theorem of Gusić and Tadić:

Theorem 2.1. [3, Theorem 1.3] Let

E(t) : y2 = x3 +Ax2 +Bx+ C; A,B,C ∈ Z[t]
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be an nonconstant elliptic curve over Q. Assume that E(t) has exactly one

nontrivial 2-torsion point over Q(t), i.e.,

x3 +Ax2 +Bx+ C = (x− e1)(x− e)(x− ē),

where e1 ∈ Z[t], and e and ē are conjugate. Let t0 ∈ Q satisfy the following

condition:

(A) For every nonconstant square-free divisor h of e21 − (e + ē)e1 + eē or

(e− ē)2 in Z[t], the rational number h(t0) is not a square in Q.

Then, the specialised curve E(t0) is elliptic and the specialisation homomor-

phism at t0 is injective.

Now we are ready to prove the following.

Theorem 2.2. Let Ek be an elliptic curve defined by y2 = x3 + k, where

(i) k = (16a6 + 27)2;

(ii) k = {3(27a6 − 1)}3,
with a variable a. Then, Ek has rank (i) at least two and (ii) two over Q(a),

whose independent points are as follows

(i) P1 = (−12a2, 16a6 − 27), P2 = ((16a6 − 81)/9, 4a3(16a6 + 243)/27);

(ii) P1 = (−(27a6 − 1)/a2, (27a6 − 1)2/a3),

P2 = ((27a6 − 1)(27a6 − 4)/(9a4), (27a6 − 1)2(27a6 + 8)/(27a6)).

Proof. (i) By the specialisation theorem of Silverman ([13, Theorem 20.3] or

[14]), in order to prove that the curve has rank at least two over Q(a), it suffices

to find a specialisation a = a0 such that the points P1 and P2 are (linearly)

independent on the specialised curve over Q. If we take a = 1, then the points

P1 = (−12, 11), P2 = (−65/9, 1036/27)

are independent of infinite order on the rank-two specialised elliptic curve

E1849 : y2 = x3 + 1849.

Indeed, the elliptic regulator, i.e., the determinant of the Néron-Tate height

pairing matrix, of the two points is the nonzero value 10.6633620537268 ac-

cording to SAGE [11].

(ii) Take a = 1, then the points

P1 = (−26, 676), P2 = (598/9, 23660/27)

are independent of infinite order on the rank-two elliptic curve

E474552 : y2 = x3 + 474552,

since the regulator of points P1 and P2 is the nonzero value 5.32235114744438.

This shows that the curve has rank at least two over Q(a) with independent

points P1, P2. Now, in order to show that the curve over Q(a) has rank two, it
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is sufficient to see that a = 1 satisfies the condition (A) of Theorem 2.1. With

the notation of Theorem 2.1, we have

e1 = −81a6 + 3, e =
3

2
(1 +

√
−3)(9a4 + 3a2 + 1)(3a2 − 1),

and ē =
3

2
(1−

√
−3)(9a4 + 3a2 + 1)(3a2 − 1),

and hence

e21 − (e+ ē)e1 + eē = 27(3a2 − 1)2(9a4 + 3a2 + 1)2 ∈ Z[a],

showing that the specialisation map at a = 1 is injective. This completes the

proof. �

Similarly to Theorem 2.2, the following is proved.

Theorem 2.3. Let Ek be an elliptic curve defined by y2 = x3 + k, where

(i) k = {4a(a− 1)(a− 8)/(a2 − 8)2}2;

(ii) k = (a6 + 1)3,

with a variable a. Then, Ek has rank (i) at least two and (ii) two over Q(a),

whose independent points are as follows

(i) P1 = (−4a(a−1)(a−8)/(a2−8)2, 4a(a−1)(a−8)(a2−2a+8)/(a2−8)3),

P2 = (−8a(a−1)(a−8)/(a2−8)2, 4a(a−1)(a−8)(a2−16a+8)/(a2−8)3);

(ii) P1 = (a2(a6 + 1), (a6 + 1)2), P2 = ((a6 + 1)/a2, (a6 + 1)2/a3).

Proof. (i) Specialisation at a = 3 shows that the points

P1 = (120, 1320), P2 = (240, 3720)

are independent of infinite order on the rank-two elliptic curve

E14400 : y2 = x3 + 14400,

as the elliptic regulator of the two points is the nonzero value 1.38909303935706.

Hence, the assertion follows immediately from the specialisation theorem of

Silverman.

(ii) Choose a = 2. Then the specialised curve becomes

E274625 : y2 = x3 + 274625,

whose rank is two, and the two points are

P1 = (260, 4225), P2 = (65/4, 4225/8).

These points are independent of infinite order, as the canonical height pairing

matrix has nonzero determinant 1.79610378763826 showing that the curve has

rank at least two over Q(a). Now, to prove that the curve over Q(a) has rank
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two, it suffices to see that a = 2 satisfies the condition (A) of Theorem 2.1.

With the notation of Theorem 2.1, for the curve we have

e1 = −a6 − 1, e =
1

2
(1 +

√
−3)(a4 − a2 + 1)(a2 + 1),

and ē =
1

2
(1−

√
−3)(a4 − a2 + 1)(a2 + 1)

.

Hence

e21 − (e+ ē)e1 + eē = 3(a2 + 1)2(a4 − a2 + 1)2 ∈ Z[a],

which shows the specialisation map at a = 2 is injective. This completes the

proof. �

The following remark illustrates some connections between the elliptic curves

Eκ3 : y2 = x3 + κ3 and those of Rubin and Silverberg [9, Corollary 3.3].

Remark 2.4. In [9, Corollary 3.3], Rubin and Silverberg have proven that the

elliptic curves

EA,Bg : y2 = x3 +Agx2 +Bg2x

with g = −AB(u2 + B2)(u4 + 2B2u2 − A2Bu2 + B4), AB(B2 − 4A) 6= 0, are

of rank (exactly) two. The curves Eκ3 : y2 = x3 + κ3, κ 6= 0, isomorphic to

y2 = x3− 3κx2 + 3κ2x, can be thus changed into EA,Bg , over some extension of

Q, so that A2 = 3B. The quadratic A2 = 3B is equivalent to choosing A = 3v,

B = 3v2, and hence the curves Eκ3 with κ = 9v4u6 + 6561v16 are of rank two

over Q(u, v).

3. Cubic Twists with Rank Three

In this section we prove:

Theorem 3.1. Consider the elliptic curve Ek2 : y2 = x3 + k2. Then

(i) There are infinitely many elliptic curves Ek2 over Q whose ranks are

at least three, parametrised by an elliptic curve of rank at least two.

(ii) There is an elliptic curve Ek2 over Q(m) whose rank is at least three,

parametrised by an elliptic curve of rank at least two.

Proof. (i) Let us set k = a2 − 1. Theorem 5.3 of [5] implies that the Mordell

curve

Ek2 : y2 = x3 + k2, (3.1)

is an infinite family with non-obvious point

P1 = (a2 − 1, a(a2 − 1)).

A new point P2 with x-coordinate x2 = 1 − a is on the cubic (3.1) if the

expression a2 + a + 2 is a rational square. This turns out to be equivalent to

choosing

a =
t2 − 4t+ 2

t2 − 1
.
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Hence, the coefficient k of the subfamily Ek becomes

k = − (4t− 3)(2t2 − 4t+ 1)

(t2 − 1)2
,

and the x-coordinates of two independent points P1 and P2 turn out to be

x1 = −(4t− 3)(2t2 − 4t+ 1)/(t2 − 1)2,

x2 = (4t− 3)/(t2 − 1).

Specialisation at, e.g., t = 2 shows that the points P1 and P2 are independent:

For this value of t, which makes a = −2/3 and k = −5/9, the two points

P1 = (−5/9, 10/27), P2 = (5/3, 20/9),

are independent of infinite order on the rank-two specialised curve

E(5/9)2 : y2 = x3 +

(
5

9

)2

.

Indeed, the determinant of the Néron-Tate height pairing matrix of the two

points P1, P2 is the nonzero value 1.38909303935706. Now the condition for

x3 = −1 to be the x-coordinate of third point P3 on the resulting cubic, gives

the quartic equation

s2 = −t4 − 8t3 + 24t2 − 16t+ 2.

Observe that (−1, 7) is a rational point on the curve, so the quartic curve is

birationally equivalent to the elliptic curve

E : w2 + 4zw − 24w = z3 − 10z2 + 4z − 40,

being generated by (−5, 29) and (11, 5). Now a rational point (z, w) gives rise

to the coordinate

t =
2z + w − 20

w
.

In particular, the generator (z, w) = (−5, 29) maps to t = −1/29, which makes

a = −257/120. Then the points

P1 = (51649/14400, 13273793/1728000),

P2 = (377/120, 95381/14400),

P3 = (−1, 49601/14400),

are independent points of infinite order on the elliptic curve

y2 = x3 + 2667619201/207360000,

since the regulator of the points is over 104. So, the points on the elliptic curve

E give a parametrisation for infinity many curves with rank at least three.
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(ii) If we impose x2 = −2(a2 − 1), as x-coordinate of a rational point P2 on

the cubic (3.1), then this leads to the condition that 9 − 8a2 is a square, and

hence a = −6t/(t2 + 8). We thus get a family of (3.1) with

k = − (t− 4)(t− 2)(t+ 2)(t+ 4)

(t2 + 8)2
,

and independent points P1 and P2 with x-coordinates:

x1 = − (t− 4)(t− 2)(t+ 2)(t+ 4)

(t2 + 8)2
,

x2 = 2
(t− 4)(t− 2)(t+ 2)(t+ 4)

(t2 + 8)2
.

(In light of the specialisation theorem of Silverman, the resulting family has

generic rank at least two over Q(t).) A calculation shows that if we consider

x3 = −(t2 − 4)/(t2 + 8), as an x-coordinate of a new point P3 on the resulting

cubic, then the expression 8− t2 must be a square. Setting

t = 2
m2 − 2m− 1

m2 + 1
, (3.2)

then 8 − t2 = 4(m2 + 2m − 1)2/(m2 + 1)2. Thus with this value of t, we are

led to an elliptic curve Ek2 with generic rank at least three over Q(m). The

independence can be easily verified, and we omit the details. �
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